Bootstrapping Nix and Linux from TinyCC

Linux From tis-but-a-Scratch

Alexander Sosedkin (@t184256)
Red Hat

2023-09-09

What I'll touch up on

m Computing is fun, toy projects are OK

m Side-quests are sometimes more rewarding than main ones
m Bootstrapping is interesting

m Reproducibility is hard

m NixOS is moving towards a bootstrap cooler than mine

m Not all benefits are obvious, not all are even technical

The world needs another Linux distro using Nix!

ZilchOS Core non-goals

m competing with Nix0S

m going beyond a Live CD

m systemd

m any software, basically

m flexibility (other than just being small)
m portability

m configurability

m stability

m usability

m practicality

ZilchOS Core goals

m offer just musl, clang, busybox, Nix and Linux

m target only one platform: x86_64 QEMU

m be lean enough to experiment on

m avoid GNU software where possible

m force me to learn more Nix-lang and nixpkgs idioms
m give content-addressed Nix a spin

m have a decent bootstrap seed/path

m have fun

https://github.com/t184256/bootstrap-from-tcc

t happen.

1

c
=
o
e
4°]
i
T
s
o
e
(19
P
L S
(1°)
P

bootstrap-from-tcc

How to start building a distro

m compiler
m libc

m coreutils
m make

u

What to compile them with?

NixOS
24M bootstrap-tools.tar.xz with glibc, gcc and coreutils

What to compile them with?

Nix0S
24M bootstrap-tools.tar.xz with glibc, gcc and coreutils

stage0 (bootstrappable.org)
State of art is stage@ and their ‘full-source bootstrap’ from .5K

This is a set of manually created hex programs
in a Cthulhu Path to madness fashion.

hexd -> hex1 -> catm -> hex2 -> M@ -> cc_x86 -> M1 -> M2 ->
get_machine -> M2-Planet -> Mes -> tcc -> gcc

y.

@ =

TinyCC (tcc)

Another one of Fabrice Bellard’s creations.

$ nix build 'nixpkgsttpkgsStatic.tinycc' && du -h result/bin/tcc
384K result/bin/tcc

Moreover, it has a -run option:
-run run compiled source

#include <stdio.h>
int main()

printf("Hello, NixCon!\n");

return 0;
} 4

Let's begin from tcc

#include <stdio.h>

int main() {
printf("Hello, NixCon!\n");
return 0;

}

-nostdinc do not use standard system include paths
-nostdlib do not link with standard crt and libraries

y,

-nostdlib: syscalls

static long __syscallé(long n, long al, long a2, long a3, long a4, long ab, long a6);
asn (

//".qlobl __syscallé;"

".type __syscall6, @function;"

"__syscall6:;"

"movq %rdi, Yrax;"

"movq %rsi, %rdi;"

"movq %rdx, Yrsi;"

"movq %rcx, drdx;"

"movq %r8, %r10;"

"movq %r9, %r8;"

"movq 8(%rsp),%r9;"

"syscall;"

Ilret"

);

static __inline long __syscall3(long n, long al, long a2, long a3) {
return __syscallé(n, al, a2, a3, 0, 8, 06);
}

-nostdlib: this is my hello world now

#define SYS_write 1
#define STDOUT 1

long write(int fd, const voidx buf, long cnt) {
return __syscall3(SYS_write, fd, (long) buf, cnt);
}

int _start() {
write(STDOUT, "Hello, NixCon!\n",

strlen("Hello, NixCon!\n"));
return 0;

-nostdlib: crawling my way out

libc replacements: strlen, strcpy, strcmp, memset, assert.
Syscalls: write, open, fork, execve, exit, wait4, getdents, mkdir.

With unpacked sources and a the possibility to execute itself, let's start
compiling towards a shell. 1ibtcc1, protobusybox, protomusl.

Y.

Can't use buildsystems

compile_applet("ash",
PROTOSRC" /protobusybox/shell/shell_common.c",
PROTOSRC" /protobusybox/shell/ash_ptr_hack.c",
PROTOSRC" /protobusybox/shell/math.c",
PROTOSRC" /protobusybox/coreutils/printf.c",
PROTOSRC" /protobusybox/coreutils/test_ptr_hack.c",
PROTOSRC" /protobusybox/coreutils/test.c",
PROTOSRC" /protobusybox/shell/ash.c")

run(42, STORE_PROTOBUSYBOX"/bin/ash", "-c",
"orintf 'Hello from ash!\n'; exit 42");

Y.

1-stagel.c overview

m (some) tcc

m libtccl
m protomusl

m tcc
m libtccl
m tcc (final, independent)

m libtccl
m protomusl

m tcc (double-check)
m protobusybox

1-stagel.c overview, shortened

m (some) tcc
m protomusl

m tcc
m tcc (final, independent)

m protomusl
m tcc (double-check)
m protobusybox

and, with a shell, we exec into all-past-stagel.sh

200-gnumake. sh (shortened)

export PATH=/store/1-stage1/tinycc/wrappers:/store/1-stage1/protobusybox/bin

mkdir -p /store/2a6-static-gnumake /tmp/2a8-static-gnumake
cd /tmp/2a6-static-gnumake

tar --strip-components=1 -xf /downloads/make-4.4.1.tar.gz

ash ./configure \
--build x86_64-1inux \
--disable-dependency-tracking \
—-prefix=/store/200-static-gnumake \
CONFIG_SHELL="/store/1-stage1/protobusybox/bin/ash' \
SHELL='/store/1-stage1/protobusybox/bin/ash'

ash ./build.sh
./make -j SNPROC install A

stage2a: compiler ascension

m gnumake

m binutils

W gnugcc4

m musl

W gnugccé

m gnugcc10

m linux-headers
m cnake

m python

m clang

stage 2b: rebuild with the new compiler

m musl
m clang

m busybox
m gnumake

: (some) tcc ->

: protomusl -> tcc -> tcc —> protomusl -> protobusybox ->
: gnumake —> binutils -> gnugcc4 -> musl -> gnugccd —>
gnugce18 -> (1inux-headers, clang, cmake) -> clang ->

: musl -> clang —> busybox -> gnumake

Too comfy (2b-gnumake. sh, shortened)

#t!/store/2b2-busybox/bin/ash
set -uex

export PATH='/store/2b2-busybox/bin'
export PATH="$PATH:/store/2a8-static-gnunake/bin"
export PATH="$PATH:/store/2b1-clang/bin"

mkdir -p /tmp/2b3-gnumake; cd /tmp/2b3-gnumake
tar —-strip-components=1 -xf /downloads/make-4.4.1.tar.gz

sed -i 's|/bin/sh|/store/2b2-busybox/bin/ash|' build-aux/install-sh
ash ./configure \

CONFIG_SHELL=ash SHELL=ash MAKEINFO=true \

--build x86_64-linux \

--prefix=/store/2b3-gnumake \

--disable-dependency-tracking

moke -j SNPROC CFLAGS=-02
./make -j SNPROC SHELL=ash install-strip

Let's go Nix!

0 : (some) tcc ->

1 : protomusl -> tcc -> tcc -> protomusl -> protobusybox —>

2a: gnumake -> binutils -> gnugcc4 -> musl -> gnugecd ->
gnugec10 -> (1inux-headers, clang, cmake) -> clang ->

2b: musl -> clang -> busybox -> gnumake

3a: sqlite, boost, mbedtls, pkg-config, curl, editline, brotli,
gnugperf, seccomp, libarchive, libsodium, lowdown

3b: busybox-static, tinycc-static, nix

y,.

Intermission: reproducibility

Reproducibility is HARD. It's a constant struggle. Highlights:

mismatch in stage1

Intermission: reproducibility

Reproducibility is HARD. It's a constant struggle. Highlights:

mismatch in stage1
m filesystem ordering

Intermission: reproducibility

Reproducibility is HARD. It's a constant struggle. Highlights:

mismatch in stage1
m filesystem ordering
mismatch in libraries

Intermission: reproducibility

Reproducibility is HARD. It's a constant struggle. Highlights:

mismatch in stage1

m filesystem ordering
mismatch in libraries

m core count non-determinism

Intermission: reproducibility

Reproducibility is HARD. It's a constant struggle. Highlights:

mismatch in stage1
m filesystem ordering
mismatch in libraries
m core count non-determinism
race condition in clang buildsystem

Intermission: reproducibility

Reproducibility is HARD. It's a constant struggle. Highlights:

mismatch in stage1
m filesystem ordering

mismatch in libraries
m core count non-determinism

race condition in clang buildsystem
m missing cmake dependency

Intermission: reproducibility

Reproducibility is HARD. It's a constant struggle. Highlights:

mismatch in stage1
m filesystem ordering
mismatch in libraries
m core count non-determinism
race condition in clang buildsystem
m missing cmake dependency
mismatch in a single-file tarball!

Intermission: reproducibility

Reproducibility is HARD. It's a constant struggle. Highlights:

mismatch in stage1
m filesystem ordering
mismatch in libraries
m core count non-determinism
race condition in clang buildsystem
m missing cmake dependency
mismatch in a single-file tarball!
m tar 4.15 update

Intermission: reproducibility

Reproducibility is HARD. It's a constant struggle. Highlights:

mismatch in stage1
m filesystem ordering
mismatch in libraries
m core count non-determinism
race condition in clang buildsystem
m missing cmake dependency
mismatch in a single-file tarball!
m tar 4.15 update
mismatch in Perl

Intermission: reproducibility

Reproducibility is HARD. It's a constant struggle. Highlights:

mismatch in stage1
m filesystem ordering
mismatch in libraries
m core count non-determinism
race condition in clang buildsystem
m missing cmake dependency
mismatch in a single-file tarball!
m tar 4.15 update

mismatch in Perl
m year change

Wait, there was no Perl

Yes, I've cheated. I'm now building my own fork of Nix that does not
depend on openssl.

Other changes in ZilchOS/nix fork include:

m Revive release tarball in a limited form

m Make gtest optional by skipping tests in case of —disable-gtest

m Make libmain explicitly depend on libdl

m Use libsodium for SHA-2 instead of openssl, vendor MD5/SHA1

m Do not fail with inaccessible /proc/self/exe

m Respect NIX_FORCE_BUILD_PATH to set the path w/o sandboxing

A

Let's restart, this time using Nix

0 : (some) tcc ->

1 : protomusl -> tcc -> tcc -> protomusl -> protobusybox —>

2a: gnumake -> binutils -> gnugcc4 -> musl -> gnugecd ->
gnugce18 -> (1inux-headers, clang, cmake) -> clang ->

2b: musl -> clang -> busybox -> gnumake

3a: sqlite, boost, mbedtls, pkg-config, curl, editline, brotli
gnugperf, seccomp, libarchive, libsodium, lowdown

3b: busybox-static, tinycc-static, nix

4 : protomusl -> tcc -> tcc -> protomusl -> protobusybox ->
gnumake -> binutils -> gnugcc4 -> musl -> gnugccd —>
gnugec10 -> (1inux-headers, clang, cmake) -> clang ->
musl -> clang -> busybox A

What bootstrap-from-tcc is

A toy bootstrap for a toy distro. It just happens to be
better than NixOS bootstrap, but worse than stage0. 24M > .5M > .5K.

It's also not a “trusted” bootstrap, as one has to trust:
m TinyCC binary

What bootstrap-from-tcc is

A toy bootstrap for a toy distro. It just happens to be
better than NixOS bootstrap, but worse than stage0. 24M > .5M > .5K.

It's also not a “trusted” bootstrap, as one has to trust:

m TinyCC binary
m .5G (4.7G) of sources

What bootstrap-from-tcc is

A toy bootstrap for a toy distro. It just happens to be
better than NixOS bootstrap, but worse than stage0. 24M > .5M > .5K.

It's also not a “trusted” bootstrap, as one has to trust:

m TinyCC binary
m .5G (4.7G) of sources
m running kernel

What bootstrap-from-tcc is

A toy bootstrap for a toy distro. It just happens to be
better than NixOS bootstrap, but worse than stage0. 24M > .5M > .5K.

It's also not a “trusted” bootstrap, as one has to trust:

m TinyCC binary
m .5G (4.7G) of sources
m running kernel

What bootstrap-from-tcc is

A toy bootstrap for a toy distro. It just happens to be
better than NixOS bootstrap, but worse than stage0. 24M > .5M > .5K.

It's also not a “trusted” bootstrap, as one has to trust:

m TinyCC binary
m .5G (4.7G) of sources
m running kernel

a path to compile Nix from any recent TinyCC without anything
same, but with Makefile scaffolding for ease of maintenance
an input-less flake that starts with TinyCC and sources and provides
a functioning clang musl toolchain A

Let's prove it's functioning

In a separate flake, ZilchOS/core, implement callPackage/override and:

4: musl -> clang —> busybox ->
5: (1inux-headers, clang, cmake) ->
clang -> musl -> clang -> busybox ->
patchelf, ca-bundle, curl, mbedtls,
boost, brotli, editline, gnugperf,
libarchive, libsodium, lowdown, nlohmann_json,
seccomp, sqlite, flex, bison, m4, zstd,
gnubinutils, gnumtools, gnuxorriso, nasm,
nix, linux, limine
-> /ilch0S-core-live-cd-2023.89.2.1s0 A

A

First release;: 2022.02.1 - it boots

Today's release: 2023.09.2 - self-hosting

What else came out of it

a ton of technical experience
minimal-bootstrap inspiration
patches
lessons

Content-addressed derivations

The idea is awesome. .
But so far, | regret picking that choice.

A lot of support isn't really there yet:

m passing around nars

m copying derivations between stores

m substituting (for many of the serving software)
m hydra (I have to maintain a patchset)

minimal-bootstrap project inspiration

Emily Trau has packaged stage0-posix in nixpkgs:

I've been hacking around reducing nixpkgs's bootstrap binary, and
your bootstrap-from-tcc project has been a huge help as a reference!
My experiment currently goes from stage0-posix (255 bytes)

up to tcc-with-musl.

Refer to nixpkgs/pkgs/os-specific/1inux/minimal-bootstrap/.

Join teams.minimal-bootstrap.members to help:
artturin, emilytrau, ericson2314, jk, siraben.

Patches

tinycc#dallcf: don't skip weak symbols during ar.. - accepted

ibara/moke#5: fix compiling with tinycc - accepted
LLUM D115827: add missing dependency - accepted
nix#b678: document libsodium as a dependency - accepted
Nix#5679: make cpuid dependency optional - accepted
Nix#5681: dropping openssl - rejected
nixpkgs#141999: fix pkgsStatic.tinycc - accepted

Takeaways

Technical:

Now | know where little distros come from
Bootstraping is interesting, even “easy” bootstrapping
Reproducibility is hard

NixOS is moving towards a stage0-posix bootstrap

Takeaways

Technical:

Now | know where little distros come from
Bootstraping is interesting, even “easy” bootstrapping
Reproducibility is hard

NixOS is moving towards a stage0-posix bootstrap

Non-technical:

One doesn'’t have to do state-of-art stuff
Staying a bit beyond ones abilities => constant stream of motivation
Side-quests are sometimes more rewarding than main ones

Takeaways

Technical:

Now | know where little distros come from
Bootstraping is interesting, even “easy” bootstrapping
Reproducibility is hard

NixOS is moving towards a stage0-posix bootstrap

Non-technical:

One doesn'’t have to do state-of-art stuff
Staying a bit beyond ones abilities => constant stream of motivation
Side-quests are sometimes more rewarding than main ones

Announce projects without sitting on them for years A

Compilers

tcc, te, tec, tec, tcc, tee, tec, tee
gce, gec, gec, gce, gec, gec,
clang-clang, clang-clang,
clang clang
tcc, tee, tec, tee clang-clang,
gce, gec, gec,

clang
clang-clang,
clang
clang-clang,
clang

	The world needs another Linux distro using Nix!
	Narrator: That didn’t happen.
	bootstrap-from-tcc
	Live demo
	First release: 2022.02.1 - it boots
	Today’s release: 2023.09.2 - self-hosting

