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What I’ll touch up on

Computing is fun, toy projects are OK
Side-quests are sometimes more rewarding than main ones
Bootstrapping is interesting
Reproducibility is hard
NixOS is moving towards a bootstrap cooler than mine
Not all benefits are obvious, not all are even technical
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The world needs another Linux distro using Nix!
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ZilchOS Core non-goals

competing with NixOS
going beyond a Live CD
systemd
any software, basically
flexibility (other than just being small)
portability
configurability
stability
usability
practicality
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ZilchOS Core goals

offer just musl, clang, busybox, Nix and Linux
target only one platform: x86_64 QEMU
be lean enough to experiment on
avoid GNU software where possible
force me to learn more Nix-lang and nixpkgs idioms
give content-addressed Nix a spin
have a decent bootstrap seed/path
have fun

https://github.com/t184256/bootstrap-from-tcc


6

Narrator: That didn’t happen.
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bootstrap-from-tcc
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How to start building a distro

compiler
libc
coreutils
make
other stuff
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What to compile them with?

NixOS
24M bootstrap-tools.tar.xz with glibc, gcc and coreutils

stage0 (bootstrappable.org)
State of art is stage0 and their ‘full-source bootstrap’ from .5K

This is a set of manually created hex programs
in a Cthulhu Path to madness fashion.

hex0 -> hex1 -> catm -> hex2 -> M0 -> cc_x86 -> M1 -> M2 ->
get_machine -> M2-Planet -> Mes -> tcc -> gcc
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TinyCC (tcc)

Another one of Fabrice Bellard’s creations.
$ nix build 'nixpkgs#pkgsStatic.tinycc' && du -h result/bin/tcc
384K result/bin/tcc
Moreover, it has a -run option:

-run run compiled source
#include <stdio.h>
int main() {

printf("Hello, NixCon!\n");
return 0;

}
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Let’s begin from tcc

#include <stdio.h>
int main() {

printf("Hello, NixCon!\n");
return 0;

}
-nostdinc do not use standard system include paths
-nostdlib do not link with standard crt and libraries
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-nostdlib: syscalls
static long __syscall6(long n, long a1, long a2, long a3, long a4, long a5, long a6);
asm (

//".globl __syscall6;"
".type __syscall6, @function;"
"__syscall6:;"
"movq %rdi, %rax;"
"movq %rsi, %rdi;"
"movq %rdx, %rsi;"
"movq %rcx, %rdx;"
"movq %r8, %r10;"
"movq %r9, %r8;"
"movq 8(%rsp),%r9;"
"syscall;"
"ret"

);
static __inline long __syscall3(long n, long a1, long a2, long a3) {

return __syscall6(n, a1, a2, a3, 0, 0, 0);
}



14

-nostdlib: this is my hello world now

#define SYS_write 1
#define STDOUT 1
long write(int fd, const void* buf, long cnt) {

return __syscall3(SYS_write, fd, (long) buf, cnt);
}
int _start() {

write(STDOUT, "Hello, NixCon!\n",
strlen("Hello, NixCon!\n"));

return 0;
}
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-nostdlib: crawling my way out

libc replacements: strlen, strcpy, strcmp, memset, assert.
Syscalls: write, open, fork, execve, exit, wait4, getdents, mkdir.
With unpacked sources and a the possibility to execute itself, let’s start
compiling towards a shell. libtcc1, protobusybox, protomusl.
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Can’t use buildsystems

compile_applet("ash",
PROTOSRC"/protobusybox/shell/shell_common.c",
PROTOSRC"/protobusybox/shell/ash_ptr_hack.c",
PROTOSRC"/protobusybox/shell/math.c",
PROTOSRC"/protobusybox/coreutils/printf.c",
PROTOSRC"/protobusybox/coreutils/test_ptr_hack.c",
PROTOSRC"/protobusybox/coreutils/test.c",
PROTOSRC"/protobusybox/shell/ash.c")

run(42, STORE_PROTOBUSYBOX"/bin/ash", "-c",
"printf 'Hello from ash!\n'; exit 42");
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1-stage1.c overview

(some) tcc
libtcc1
protomusl
tcc
libtcc1
tcc (final, independent)
libtcc1
protomusl
tcc (double-check)
protobusybox
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1-stage1.c overview, shortened

(some) tcc
protomusl
tcc
tcc (final, independent)
protomusl
tcc (double-check)
protobusybox

and, with a shell, we exec into all-past-stage1.sh
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2a0-gnumake.sh (shortened)
#!/store/1-stage1/protobusybox/bin/ash
export PATH=/store/1-stage1/tinycc/wrappers:/store/1-stage1/protobusybox/bin
mkdir -p /store/2a0-static-gnumake /tmp/2a0-static-gnumake
cd /tmp/2a0-static-gnumake
tar --strip-components=1 -xf /downloads/make-4.4.1.tar.gz...
ash ./configure \

--build x86_64-linux \
--disable-dependency-tracking \
--prefix=/store/2a0-static-gnumake \
CONFIG_SHELL='/store/1-stage1/protobusybox/bin/ash' \
SHELL='/store/1-stage1/protobusybox/bin/ash'

ash ./build.sh
./make -j $NPROC install
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stage2a: compiler ascension

gnumake
binutils
gnugcc4
musl
gnugcc4
gnugcc10
linux-headers
cmake
python
clang
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stage 2b: rebuild with the new compiler

musl
clang
busybox
gnumake
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So far

0 : (some) tcc ->
1 : protomusl -> tcc -> tcc -> protomusl -> protobusybox ->
2a: gnumake -> binutils -> gnugcc4 -> musl -> gnugcc4 ->

gnugcc10 -> (linux-headers, clang, cmake) -> clang ->
2b: musl -> clang -> busybox -> gnumake
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Too comfy (2b-gnumake.sh, shortened)
#!/store/2b2-busybox/bin/ash
set -uex
export PATH='/store/2b2-busybox/bin'
export PATH="$PATH:/store/2a0-static-gnumake/bin"
export PATH="$PATH:/store/2b1-clang/bin"
mkdir -p /tmp/2b3-gnumake; cd /tmp/2b3-gnumake
tar --strip-components=1 -xf /downloads/make-4.4.1.tar.gz
sed -i 's|/bin/sh|/store/2b2-busybox/bin/ash|' build-aux/install-sh
ash ./configure \

CONFIG_SHELL=ash SHELL=ash MAKEINFO=true \
--build x86_64-linux \
--prefix=/store/2b3-gnumake \
--disable-dependency-tracking

make -j $NPROC CFLAGS=-O2
./make -j $NPROC SHELL=ash install-strip
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Let’s go Nix!

0 : (some) tcc ->
1 : protomusl -> tcc -> tcc -> protomusl -> protobusybox ->
2a: gnumake -> binutils -> gnugcc4 -> musl -> gnugcc4 ->

gnugcc10 -> (linux-headers, clang, cmake) -> clang ->
2b: musl -> clang -> busybox -> gnumake
3a: sqlite, boost, mbedtls, pkg-config, curl, editline, brotli,

gnugperf, seccomp, libarchive, libsodium, lowdown
3b: busybox-static, tinycc-static, nix
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Intermission: reproducibility

Reproducibility is HARD. It’s a constant struggle. Highlights:

1 mismatch in stage1

filesystem ordering
2 mismatch in libraries

core count non-determinism

3 race condition in clang buildsystem

missing cmake dependency

4 mismatch in a single-file tarball!

tar 4.15 update

5 mismatch in Perl

year change
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Wait, there was no Perl

Yes, I’ve cheated. I’m now building my own fork of Nix that does not
depend on openssl.

Other changes in ZilchOS/nix fork include:

Revive release tarball in a limited form
Make gtest optional by skipping tests in case of –disable-gtest
Make libmain explicitly depend on libdl
Use libsodium for SHA-2 instead of openssl, vendor MD5/SHA1
Do not fail with inaccessible /proc/self/exe
Respect NIX_FORCE_BUILD_PATH to set the path w/o sandboxing
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Let’s restart, this time using Nix

0 : (some) tcc ->
1 : protomusl -> tcc -> tcc -> protomusl -> protobusybox ->
2a: gnumake -> binutils -> gnugcc4 -> musl -> gnugcc4 ->

gnugcc10 -> (linux-headers, clang, cmake) -> clang ->
2b: musl -> clang -> busybox -> gnumake
3a: sqlite, boost, mbedtls, pkg-config, curl, editline, brotli

gnugperf, seccomp, libarchive, libsodium, lowdown
3b: busybox-static, tinycc-static, nix
4 : protomusl -> tcc -> tcc -> protomusl -> protobusybox ->

gnumake -> binutils -> gnugcc4 -> musl -> gnugcc4 ->
gnugcc10 -> (linux-headers, clang, cmake) -> clang ->
musl -> clang -> busybox
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What bootstrap-from-tcc is

A toy bootstrap for a toy distro. It just happens to be
better than NixOS bootstrap, but worse than stage0. 24M > .5M > .5K.
It’s also not a “trusted” bootstrap, as one has to trust:

TinyCC binary

.5G (4.7G) of sources
running kernel

1 a path to compile Nix from any recent TinyCC without anything
2 same, but with Makefile scaffolding for ease of maintenance
3 an input-less flake that starts with TinyCC and sources and provides

a functioning clang musl toolchain
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Let’s prove it’s functioning

In a separate flake, ZilchOS/core, implement callPackage/override and:

4: musl -> clang -> busybox ->
5: (linux-headers, clang, cmake) ->

clang -> musl -> clang -> busybox ->
patchelf, ca-bundle, curl, mbedtls,
boost, brotli, editline, gnugperf,
libarchive, libsodium, lowdown, nlohmann_json,
seccomp, sqlite, flex, bison, m4, zstd,
gnubinutils, gnumtools, gnuxorriso, nasm,
nix, linux, limine

-> ZilchOS-core-live-cd-2023.09.2.iso
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Live demo
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First release: 2022.02.1 - it boots
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Today’s release: 2023.09.2 - self-hosting
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What else came out of it

1 a ton of technical experience
2 minimal-bootstrap inspiration
3 patches
4 lessons
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Content-addressed derivations

The idea is awesome.
But so far, I regret picking that choice.

A lot of support isn’t really there yet:

passing around nars
copying derivations between stores
substituting (for many of the serving software)
hydra (I have to maintain a patchset)
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minimal-bootstrap project inspiration

Emily Trau has packaged stage0-posix in nixpkgs:

I’ve been hacking around reducing nixpkgs’s bootstrap binary, and
your bootstrap-from-tcc project has been a huge help as a reference!
My experiment currently goes from stage0-posix (255 bytes)
up to tcc-with-musl.

Refer to nixpkgs/pkgs/os-specific/linux/minimal-bootstrap/.
Join teams.minimal-bootstrap.members to help:
artturin, emilytrau, ericson2314, jk, siraben.
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Patches

tinycc#da11cf: don't skip weak symbols during ar… - accepted
ibara/make#5: fix compiling with tinycc - accepted
LLVM D115827: add missing dependency - accepted
nix#5678: document libsodium as a dependency - accepted
nix#5679: make cpuid dependency optional - accepted
nix#5681: dropping openssl - rejected
nixpkgs#141999: fix pkgsStatic.tinycc - accepted
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Takeaways

Technical:
1 Now I know where little distros come from
2 Bootstraping is interesting, even “easy” bootstrapping
3 Reproducibility is hard
4 NixOS is moving towards a stage0-posix bootstrap

Non-technical:
1 One doesn’t have to do state-of-art stuff
2 Staying a bit beyond ones abilities => constant stream of motivation
3 Side-quests are sometimes more rewarding than main ones

4 Announce projects without sitting on them for years
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Compilers

tcc, tcc, tcc, tcc,
gcc, gcc, gcc,
clang-clang,
clang
tcc, tcc, tcc, tcc
gcc, gcc, gcc,
clang-clang,
clang
clang-clang,
clang

tcc, tcc, tcc, tcc
gcc, gcc, gcc,
clang-clang,
clang

clang-clang,
clang
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