
Bootstrapping Nix and Linux from TinyCC
Linux From tis-but-a-Scratch

Alexander Sosedkin (@t184256)

Red Hat

2023-09-09

2

What I’ll touch up on

Computing is fun, toy projects are OK
Side-quests are sometimes more rewarding than main ones
Bootstrapping is interesting
Reproducibility is hard
NixOS is moving towards a bootstrap cooler than mine
Not all benefits are obvious, not all are even technical

3

The world needs another Linux distro using Nix!

4

ZilchOS Core non-goals

competing with NixOS
going beyond a Live CD
systemd
any software, basically
flexibility (other than just being small)
portability
configurability
stability
usability
practicality

5

ZilchOS Core goals

offer just musl, clang, busybox, Nix and Linux
target only one platform: x86_64 QEMU
be lean enough to experiment on
avoid GNU software where possible
force me to learn more Nix-lang and nixpkgs idioms
give content-addressed Nix a spin
have a decent bootstrap seed/path
have fun

https://github.com/t184256/bootstrap-from-tcc

6

Narrator: That didn’t happen.

7

bootstrap-from-tcc

8

How to start building a distro

compiler
libc
coreutils
make
other stuff

9

What to compile them with?

NixOS
24M bootstrap-tools.tar.xz with glibc, gcc and coreutils

stage0 (bootstrappable.org)
State of art is stage0 and their ‘full-source bootstrap’ from .5K

This is a set of manually created hex programs
in a Cthulhu Path to madness fashion.

hex0 -> hex1 -> catm -> hex2 -> M0 -> cc_x86 -> M1 -> M2 ->
get_machine -> M2-Planet -> Mes -> tcc -> gcc

9

What to compile them with?

NixOS
24M bootstrap-tools.tar.xz with glibc, gcc and coreutils

stage0 (bootstrappable.org)
State of art is stage0 and their ‘full-source bootstrap’ from .5K

This is a set of manually created hex programs
in a Cthulhu Path to madness fashion.

hex0 -> hex1 -> catm -> hex2 -> M0 -> cc_x86 -> M1 -> M2 ->
get_machine -> M2-Planet -> Mes -> tcc -> gcc

10

11

TinyCC (tcc)

Another one of Fabrice Bellard’s creations.
$ nix build 'nixpkgs#pkgsStatic.tinycc' && du -h result/bin/tcc
384K result/bin/tcc
Moreover, it has a -run option:

-run run compiled source
#include <stdio.h>
int main() {

printf("Hello, NixCon!\n");
return 0;

}

12

Let’s begin from tcc

#include <stdio.h>
int main() {

printf("Hello, NixCon!\n");
return 0;

}
-nostdinc do not use standard system include paths
-nostdlib do not link with standard crt and libraries

13

-nostdlib: syscalls
static long __syscall6(long n, long a1, long a2, long a3, long a4, long a5, long a6);
asm (

//".globl __syscall6;"
".type __syscall6, @function;"
"__syscall6:;"
"movq %rdi, %rax;"
"movq %rsi, %rdi;"
"movq %rdx, %rsi;"
"movq %rcx, %rdx;"
"movq %r8, %r10;"
"movq %r9, %r8;"
"movq 8(%rsp),%r9;"
"syscall;"
"ret"

);
static __inline long __syscall3(long n, long a1, long a2, long a3) {

return __syscall6(n, a1, a2, a3, 0, 0, 0);
}

14

-nostdlib: this is my hello world now

#define SYS_write 1
#define STDOUT 1
long write(int fd, const void* buf, long cnt) {

return __syscall3(SYS_write, fd, (long) buf, cnt);
}
int _start() {

write(STDOUT, "Hello, NixCon!\n",
strlen("Hello, NixCon!\n"));

return 0;
}

15

-nostdlib: crawling my way out

libc replacements: strlen, strcpy, strcmp, memset, assert.
Syscalls: write, open, fork, execve, exit, wait4, getdents, mkdir.
With unpacked sources and a the possibility to execute itself, let’s start
compiling towards a shell. libtcc1, protobusybox, protomusl.

16

Can’t use buildsystems

compile_applet("ash",
PROTOSRC"/protobusybox/shell/shell_common.c",
PROTOSRC"/protobusybox/shell/ash_ptr_hack.c",
PROTOSRC"/protobusybox/shell/math.c",
PROTOSRC"/protobusybox/coreutils/printf.c",
PROTOSRC"/protobusybox/coreutils/test_ptr_hack.c",
PROTOSRC"/protobusybox/coreutils/test.c",
PROTOSRC"/protobusybox/shell/ash.c")

run(42, STORE_PROTOBUSYBOX"/bin/ash", "-c",
"printf 'Hello from ash!\n'; exit 42");

17

1-stage1.c overview

(some) tcc
libtcc1
protomusl
tcc
libtcc1
tcc (final, independent)
libtcc1
protomusl
tcc (double-check)
protobusybox

18

1-stage1.c overview, shortened

(some) tcc
protomusl
tcc
tcc (final, independent)
protomusl
tcc (double-check)
protobusybox

and, with a shell, we exec into all-past-stage1.sh

19

2a0-gnumake.sh (shortened)
#!/store/1-stage1/protobusybox/bin/ash
export PATH=/store/1-stage1/tinycc/wrappers:/store/1-stage1/protobusybox/bin
mkdir -p /store/2a0-static-gnumake /tmp/2a0-static-gnumake
cd /tmp/2a0-static-gnumake
tar --strip-components=1 -xf /downloads/make-4.4.1.tar.gz...
ash ./configure \

--build x86_64-linux \
--disable-dependency-tracking \
--prefix=/store/2a0-static-gnumake \
CONFIG_SHELL='/store/1-stage1/protobusybox/bin/ash' \
SHELL='/store/1-stage1/protobusybox/bin/ash'

ash ./build.sh
./make -j $NPROC install

20

stage2a: compiler ascension

gnumake
binutils
gnugcc4
musl
gnugcc4
gnugcc10
linux-headers
cmake
python
clang

21

stage 2b: rebuild with the new compiler

musl
clang
busybox
gnumake

22

So far

0 : (some) tcc ->
1 : protomusl -> tcc -> tcc -> protomusl -> protobusybox ->
2a: gnumake -> binutils -> gnugcc4 -> musl -> gnugcc4 ->

gnugcc10 -> (linux-headers, clang, cmake) -> clang ->
2b: musl -> clang -> busybox -> gnumake

23

Too comfy (2b-gnumake.sh, shortened)
#!/store/2b2-busybox/bin/ash
set -uex
export PATH='/store/2b2-busybox/bin'
export PATH="$PATH:/store/2a0-static-gnumake/bin"
export PATH="$PATH:/store/2b1-clang/bin"
mkdir -p /tmp/2b3-gnumake; cd /tmp/2b3-gnumake
tar --strip-components=1 -xf /downloads/make-4.4.1.tar.gz
sed -i 's|/bin/sh|/store/2b2-busybox/bin/ash|' build-aux/install-sh
ash ./configure \

CONFIG_SHELL=ash SHELL=ash MAKEINFO=true \
--build x86_64-linux \
--prefix=/store/2b3-gnumake \
--disable-dependency-tracking

make -j $NPROC CFLAGS=-O2
./make -j $NPROC SHELL=ash install-strip

24

Let’s go Nix!

0 : (some) tcc ->
1 : protomusl -> tcc -> tcc -> protomusl -> protobusybox ->
2a: gnumake -> binutils -> gnugcc4 -> musl -> gnugcc4 ->

gnugcc10 -> (linux-headers, clang, cmake) -> clang ->
2b: musl -> clang -> busybox -> gnumake
3a: sqlite, boost, mbedtls, pkg-config, curl, editline, brotli,

gnugperf, seccomp, libarchive, libsodium, lowdown
3b: busybox-static, tinycc-static, nix

25

Intermission: reproducibility

Reproducibility is HARD. It’s a constant struggle. Highlights:

1 mismatch in stage1

filesystem ordering
2 mismatch in libraries

core count non-determinism

3 race condition in clang buildsystem

missing cmake dependency

4 mismatch in a single-file tarball!

tar 4.15 update

5 mismatch in Perl

year change

25

Intermission: reproducibility

Reproducibility is HARD. It’s a constant struggle. Highlights:

1 mismatch in stage1
filesystem ordering

2 mismatch in libraries

core count non-determinism

3 race condition in clang buildsystem

missing cmake dependency

4 mismatch in a single-file tarball!

tar 4.15 update

5 mismatch in Perl

year change

25

Intermission: reproducibility

Reproducibility is HARD. It’s a constant struggle. Highlights:

1 mismatch in stage1
filesystem ordering

2 mismatch in libraries

core count non-determinism
3 race condition in clang buildsystem

missing cmake dependency

4 mismatch in a single-file tarball!

tar 4.15 update

5 mismatch in Perl

year change

25

Intermission: reproducibility

Reproducibility is HARD. It’s a constant struggle. Highlights:

1 mismatch in stage1
filesystem ordering

2 mismatch in libraries
core count non-determinism

3 race condition in clang buildsystem

missing cmake dependency

4 mismatch in a single-file tarball!

tar 4.15 update

5 mismatch in Perl

year change

25

Intermission: reproducibility

Reproducibility is HARD. It’s a constant struggle. Highlights:

1 mismatch in stage1
filesystem ordering

2 mismatch in libraries
core count non-determinism

3 race condition in clang buildsystem

missing cmake dependency
4 mismatch in a single-file tarball!

tar 4.15 update

5 mismatch in Perl

year change

25

Intermission: reproducibility

Reproducibility is HARD. It’s a constant struggle. Highlights:

1 mismatch in stage1
filesystem ordering

2 mismatch in libraries
core count non-determinism

3 race condition in clang buildsystem
missing cmake dependency

4 mismatch in a single-file tarball!

tar 4.15 update

5 mismatch in Perl

year change

25

Intermission: reproducibility

Reproducibility is HARD. It’s a constant struggle. Highlights:

1 mismatch in stage1
filesystem ordering

2 mismatch in libraries
core count non-determinism

3 race condition in clang buildsystem
missing cmake dependency

4 mismatch in a single-file tarball!

tar 4.15 update
5 mismatch in Perl

year change

25

Intermission: reproducibility

Reproducibility is HARD. It’s a constant struggle. Highlights:

1 mismatch in stage1
filesystem ordering

2 mismatch in libraries
core count non-determinism

3 race condition in clang buildsystem
missing cmake dependency

4 mismatch in a single-file tarball!
tar 4.15 update

5 mismatch in Perl

year change

25

Intermission: reproducibility

Reproducibility is HARD. It’s a constant struggle. Highlights:

1 mismatch in stage1
filesystem ordering

2 mismatch in libraries
core count non-determinism

3 race condition in clang buildsystem
missing cmake dependency

4 mismatch in a single-file tarball!
tar 4.15 update

5 mismatch in Perl

year change

25

Intermission: reproducibility

Reproducibility is HARD. It’s a constant struggle. Highlights:

1 mismatch in stage1
filesystem ordering

2 mismatch in libraries
core count non-determinism

3 race condition in clang buildsystem
missing cmake dependency

4 mismatch in a single-file tarball!
tar 4.15 update

5 mismatch in Perl
year change

26

Wait, there was no Perl

Yes, I’ve cheated. I’m now building my own fork of Nix that does not
depend on openssl.

Other changes in ZilchOS/nix fork include:

Revive release tarball in a limited form
Make gtest optional by skipping tests in case of –disable-gtest
Make libmain explicitly depend on libdl
Use libsodium for SHA-2 instead of openssl, vendor MD5/SHA1
Do not fail with inaccessible /proc/self/exe
Respect NIX_FORCE_BUILD_PATH to set the path w/o sandboxing

27

Let’s restart, this time using Nix

0 : (some) tcc ->
1 : protomusl -> tcc -> tcc -> protomusl -> protobusybox ->
2a: gnumake -> binutils -> gnugcc4 -> musl -> gnugcc4 ->

gnugcc10 -> (linux-headers, clang, cmake) -> clang ->
2b: musl -> clang -> busybox -> gnumake
3a: sqlite, boost, mbedtls, pkg-config, curl, editline, brotli

gnugperf, seccomp, libarchive, libsodium, lowdown
3b: busybox-static, tinycc-static, nix
4 : protomusl -> tcc -> tcc -> protomusl -> protobusybox ->

gnumake -> binutils -> gnugcc4 -> musl -> gnugcc4 ->
gnugcc10 -> (linux-headers, clang, cmake) -> clang ->
musl -> clang -> busybox

28

What bootstrap-from-tcc is

A toy bootstrap for a toy distro. It just happens to be
better than NixOS bootstrap, but worse than stage0. 24M > .5M > .5K.
It’s also not a “trusted” bootstrap, as one has to trust:

TinyCC binary

.5G (4.7G) of sources
running kernel

1 a path to compile Nix from any recent TinyCC without anything
2 same, but with Makefile scaffolding for ease of maintenance
3 an input-less flake that starts with TinyCC and sources and provides

a functioning clang musl toolchain

28

What bootstrap-from-tcc is

A toy bootstrap for a toy distro. It just happens to be
better than NixOS bootstrap, but worse than stage0. 24M > .5M > .5K.
It’s also not a “trusted” bootstrap, as one has to trust:

TinyCC binary
.5G (4.7G) of sources

running kernel

1 a path to compile Nix from any recent TinyCC without anything
2 same, but with Makefile scaffolding for ease of maintenance
3 an input-less flake that starts with TinyCC and sources and provides

a functioning clang musl toolchain

28

What bootstrap-from-tcc is

A toy bootstrap for a toy distro. It just happens to be
better than NixOS bootstrap, but worse than stage0. 24M > .5M > .5K.
It’s also not a “trusted” bootstrap, as one has to trust:

TinyCC binary
.5G (4.7G) of sources
running kernel

1 a path to compile Nix from any recent TinyCC without anything
2 same, but with Makefile scaffolding for ease of maintenance
3 an input-less flake that starts with TinyCC and sources and provides

a functioning clang musl toolchain

28

What bootstrap-from-tcc is

A toy bootstrap for a toy distro. It just happens to be
better than NixOS bootstrap, but worse than stage0. 24M > .5M > .5K.
It’s also not a “trusted” bootstrap, as one has to trust:

TinyCC binary
.5G (4.7G) of sources
running kernel

1 a path to compile Nix from any recent TinyCC without anything
2 same, but with Makefile scaffolding for ease of maintenance
3 an input-less flake that starts with TinyCC and sources and provides

a functioning clang musl toolchain

28

What bootstrap-from-tcc is

A toy bootstrap for a toy distro. It just happens to be
better than NixOS bootstrap, but worse than stage0. 24M > .5M > .5K.
It’s also not a “trusted” bootstrap, as one has to trust:

TinyCC binary
.5G (4.7G) of sources
running kernel

1 a path to compile Nix from any recent TinyCC without anything
2 same, but with Makefile scaffolding for ease of maintenance
3 an input-less flake that starts with TinyCC and sources and provides

a functioning clang musl toolchain

29

Let’s prove it’s functioning

In a separate flake, ZilchOS/core, implement callPackage/override and:

4: musl -> clang -> busybox ->
5: (linux-headers, clang, cmake) ->

clang -> musl -> clang -> busybox ->
patchelf, ca-bundle, curl, mbedtls,
boost, brotli, editline, gnugperf,
libarchive, libsodium, lowdown, nlohmann_json,
seccomp, sqlite, flex, bison, m4, zstd,
gnubinutils, gnumtools, gnuxorriso, nasm,
nix, linux, limine

-> ZilchOS-core-live-cd-2023.09.2.iso

30

Live demo

31

First release: 2022.02.1 - it boots

32

Today’s release: 2023.09.2 - self-hosting

33

What else came out of it

1 a ton of technical experience
2 minimal-bootstrap inspiration
3 patches
4 lessons

34

Content-addressed derivations

The idea is awesome.
But so far, I regret picking that choice.

A lot of support isn’t really there yet:

passing around nars
copying derivations between stores
substituting (for many of the serving software)
hydra (I have to maintain a patchset)

35

minimal-bootstrap project inspiration

Emily Trau has packaged stage0-posix in nixpkgs:

I’ve been hacking around reducing nixpkgs’s bootstrap binary, and
your bootstrap-from-tcc project has been a huge help as a reference!
My experiment currently goes from stage0-posix (255 bytes)
up to tcc-with-musl.

Refer to nixpkgs/pkgs/os-specific/linux/minimal-bootstrap/.
Join teams.minimal-bootstrap.members to help:
artturin, emilytrau, ericson2314, jk, siraben.

36

Patches

tinycc#da11cf: don't skip weak symbols during ar… - accepted
ibara/make#5: fix compiling with tinycc - accepted
LLVM D115827: add missing dependency - accepted
nix#5678: document libsodium as a dependency - accepted
nix#5679: make cpuid dependency optional - accepted
nix#5681: dropping openssl - rejected
nixpkgs#141999: fix pkgsStatic.tinycc - accepted

37

Takeaways

Technical:
1 Now I know where little distros come from
2 Bootstraping is interesting, even “easy” bootstrapping
3 Reproducibility is hard
4 NixOS is moving towards a stage0-posix bootstrap

Non-technical:
1 One doesn’t have to do state-of-art stuff
2 Staying a bit beyond ones abilities => constant stream of motivation
3 Side-quests are sometimes more rewarding than main ones

4 Announce projects without sitting on them for years

37

Takeaways

Technical:
1 Now I know where little distros come from
2 Bootstraping is interesting, even “easy” bootstrapping
3 Reproducibility is hard
4 NixOS is moving towards a stage0-posix bootstrap

Non-technical:
1 One doesn’t have to do state-of-art stuff
2 Staying a bit beyond ones abilities => constant stream of motivation
3 Side-quests are sometimes more rewarding than main ones

4 Announce projects without sitting on them for years

37

Takeaways

Technical:
1 Now I know where little distros come from
2 Bootstraping is interesting, even “easy” bootstrapping
3 Reproducibility is hard
4 NixOS is moving towards a stage0-posix bootstrap

Non-technical:
1 One doesn’t have to do state-of-art stuff
2 Staying a bit beyond ones abilities => constant stream of motivation
3 Side-quests are sometimes more rewarding than main ones

4 Announce projects without sitting on them for years

38

Compilers

tcc, tcc, tcc, tcc,
gcc, gcc, gcc,
clang-clang,
clang
tcc, tcc, tcc, tcc
gcc, gcc, gcc,
clang-clang,
clang
clang-clang,
clang

tcc, tcc, tcc, tcc
gcc, gcc, gcc,
clang-clang,
clang

clang-clang,
clang

	The world needs another Linux distro using Nix!
	Narrator: That didn’t happen.
	bootstrap-from-tcc
	Live demo
	First release: 2022.02.1 - it boots
	Today’s release: 2023.09.2 - self-hosting

